NEX

Ergonomics

12M SDK
DevelopersGuide

Contents

1 Welcome

2 System Overview

2.1 Movement Monitors L e e e e e e e e e
2.1.1 The SXT . . . o e e e e
2.1.2 The WXT . . . o . e e e e e e e
2.1.3 The DWT e e e

2.2 Docking Station e e

2.3 Access Point L L e e e e

2.4 RecordingModes e
2.4.1 Robust Synchronized Streaming L L oL
2.4.2 Rapid Synchronized Streaming
2.4.3 Synchronized Logging o v i e e e e e e e
2.4.4 Low PowerLogging Lo e e e e e e

2.5 TKMotion Manager o e e e e e

2.6 NexGen Software Development Kit L L

Downloading the SDK
3.1 SDKDirectory Structure e e e e

Software Tools and Libraries

4.1 Programming Libraries L e e e
4.1.1 Development Environments Lo e

4.2 C APl . . e
421 Documentation L e e e e e e e e
422 Usingthe HostLibraries.
423 Headers e e e e
424 SystemContext e e e e e e e
425 Docking StationHandle
4.2.6 Configuration of Movement Monitors on a Docking Station
427 AccessPointHandle
4.2.8 Configuration of Synchronized Wireless Streaming & LoggingMode
429 Variable Output Rates e
4.2.10 Wireless Channel Selection
4.2.11 Configuration of Rapid StreamingMode
4.2.12 Rapid Streaming with Correlation. o oo
4.2.13 Rapid Streaming without Correlation o oL,

10
10
10
10
10
11

12
12

4.2.14 Configuration of Synchronized Logging Mode

4.2.15 Configuration of Low Power Logging Mode
4.2.16 External Sync

5 External Synchronization and 1/0
Configuration

Input Synchronization

Input Triggers

5.2.2 Sample Selection with External Input Trigger Events
5.2.3 Annotation of Externally Triggered Recordings

Output Synchronization e e e e
Output Triggers
Isolated External Interface Details
RCA Inter-AP Sync Connector

6 Pin Digital Input/Output Connector

4 Pin Analog Input/Output Connector o o Lo
Schematic
Converting .APDM files to HDF5 or CSV

Return Codes

Threading

Wireless Buffering and Data Correlation

Max Delay / Max Latency

Real-time Systems
Timing and Protocol Properties
DLLs, DYLIB’s and SO’s

5.8.2 Other Systems

Programming Examples
Example Code Provided with the SDK
6.2 Simple Configuration and Streaming Example

High Level Psuedocode
C Programming Example

Java Programming Example

Matlab Programming Example

Working with HDF5 Files

19
19
19
20
20
20
21
21
21
22
22
24
24
25
25
25
25
26
27
27
28
29
29
29

30
30
30
30
31
33
35

39

7.2 DataOrganization e e e e e e e 39

7.3 File Structure L e e e e 39
7.3.1 Version 3 L e e e e e e e e e e e 39

7.3.2 Version 2 e e e e e e e e e e e 40

7.3.3 Version 1 e e e e e e e 42

7.4 Working with HDF 5in MATLAB e e e e e e e e 43
7.5 Examples e e e e 43
7.6 NOtES i e e e e e e e e 45

8 Calibration 46
8.1 File Format e e e e e e e 46
8.2 DataFormat e e e e e e 47
8.2.1 Calibrationversion 5. e e e e 47

9 Firmware Updates 51
9.1 Automatic Firmware Updates e 51
9.2 Manual Firmware Updates e e 51
9.2.1 Flash Default Firmware e 51

9.2.2 Flash Alternate Firmware e 51

9.2.3 ForceUpdate e e e e e 52

10 Monitor Reference 53
10.1 Charging o o e e e e e e e e e 53
10.2 Powering Down L L e e e e e e e 53
10.3 Data Storage e e 53
10.4 Cleaning o e e e e e e e e e e 53
10.5 Storage L e e e e 54
10.6 DriVers o e e e e e e e e e e e e e e 54
10.7 Firmware Updates e e e e 54
10.8 Technical Specifications e e e e 54
10.9 LED Reference e e e e e e 55
10.9.1 Status Codes and LED Colors/Patterns 55

10.9.2 Movement Monitor LED Reference o oo 55
10.10Technical Drawing o e e e e e e e e e e 58

11 Access Point Reference 59
11.1 Drivers e e e e e e e e e e e e e e e e 59
11.2 Firmware Updates e e e e 59
11.3 Mounting and Placement L e e e e e 59

11.4 Using Multiple Access Points o e 59

11.4.1 Redundancy e e e e e e e 59

11.4.2 Streaming frommorethan 6 SXTs o 59

11.5 LED Reference o e e e e e 60
11.6 Mechanical and Electrical Specifications o oL 60
11.7 Technical Drawing o e e e e e e 61

12 Docking Station Reference 62
12.1 Drivers e e e e e e e e e e e e e e e e 62
12.2 Power . . . L e e e 62
12.3 Mechanical and Electrical Specifications 62
12.4 LED Reference e e e e e 63
12.5 Technical Drawing o L e e e e e 64

13 Technical Support 65

1 Welcome

Welcome to the NexGen movement monitoring system. The following documentation will guide you through
understanding the architecture of the system and how to use it as a developer. The core SDK documentation
will focus on the C language implementation utilizing a dynamically linked library. Other language bindings
such as Java will be documented as well. For the C language or any language binding not provided it
is assumed that the end user should know how to properly load the dynamically linked library and call its
functions using the correct calling convention. Most of the documentation will use a cross platform approach
with specific platform specific notes if needed. Example code will be provided for all included language
bindings to assist in getting the user up and running in the shortest period of time possible.

2 System Overview

~ g

2 System Overview

The NexGen movement monitoring system allows the user to record data from multiple monitors; each
integrating a suite of sensors. The system can be configured in 3 recording modes allowing for a wide
rage of applications. Some movement monitors are limited to a subset of these modes allowing for a lower
cost solution. The modes of operation are robust synchronized streaming, rapid synchronized streaming,
synchronized logging, and low power logging. Regardless of the mode the movement monitor always will
record data to its local memory card which can be imported from the monitor for offline analysis.

2.1 Movement Monitors

Movement monitors are the key element of the system and combine a complement of sensors within a single
package. Sensors include a 3 axis accelerometer, a 3 axis gyro, a 3 axis magnetometer, and a temperature
sensor. The accelerometers can be configured in a high 6G mode, or a low 2G mode depending on the
target application. There are a number of options for securing the monitors on subjects using a selection of
straps.

2.1.1 The SXT

The SXT is NexGen’s full featured movement monitor allowing for use of all 4 recording modes.

7

2 System Overview

The SXT movement monitor

2.1.2 The WXT

The WXT is an option that supports the synchronized and low power logging modes, but does not support
the streaming modes. These monitors are optimized for long duration recordings or recordings where it is
not desirable to have a computer at hand to collect streaming data.

2.1.3 The DWT

The DWT only supports the low power logging mode. This version of the movement monitor has no wireless
capabilities and may be the optimal choice for RF sensitive environments or where a single movement monitor
is needed without synchronization.

The docking station, for charging, configuring, and downloading data from your movement monitors

2 System Overview

2.2 Docking Station

The docking station is used to configure, charge, and download data from the movement monitors.

2.3 Access Point

The wireless access control point (access point for short) allows for wireless communication between the
host computer and SXT movement monitors, as well as synchronization with external 3rd party hardware. A
single access point can support up to 6 SXTs. If you wish to stream from more than 6 synchronized SXTs
at the same time, you will have to use more than 1 access point and connect them with an RCA (standard
stereo) cable.

\F.-

The access point, for communicating wirelessly with your movement monitors

2.4 Recording Modes

To suit a range of different recording requirements, a number of different recording modes are possible.
Some monitor types do not support all recording modes.

2 System Overview

2.4.1 Robust Synchronized Streaming

In the robust synchronized streaming mode, you can stream data from multiple, synchronized monitors di-
rectly to your computer. Data is buffered on the monitors, so no data is lost even if there are interruptions in
the wireless signal. Only the SXTs can be used in this mode.

2.4.2 Rapid Synchronized Streaming

The rapid synchronized streaming mode is similar to the robust synchronized streaming mode, except data
is not buffered on the monitors in order to minimize the latency of the streaming data. Latency on Linux and
Mac OS is typically in the range of 8ms to 25ms, while latency on Windows is typically in the range of 10ms
to 75ms. This recording mode is appropriate for biofeedback applications. In the event of interruptions in the
wireless signal, data will be dropped from the steram. Only the SXTs can be used in this mode.

2.4.3 Synchronized Logging

In the synchronized logging mode, monitors log recorded data to their on-board flash memory. The monitors
are synchronized wirelessly with each other while recording, so the individual logs can easily be synchronized
with each other after the data has been imported from your monitor(s). In this mode, up to 32 monitors can
be synchronized within a single “mesh”. Only WXTs and SXTs are able to use this mode.

2.4.4 Low Power Logging

All movement monitor products (SXTs, WXTs, and DWTs) are able to operate in the low power logging
mode. In this mode, the monitors’ wireless radios are disabled, decreasing the power required for operation
and enabling the monitors to run for longer periods of time. Since the mode does not use any wireless

synchronization, each movement monitor will collect data independently and potentially at slightly different
rates due to clock drift.

2.5 TK Motion Manager

TK Motion Manager is the default software suite bundled with the I2M movement monitor system. It provides
an easy way to get up and running collecting data with your movement monitors.

10

2 System Overview

2.6 NexGen Software Development Kit

The NexGen Software Development Kit (SKD) provides programming tools for software developers. These
tools enable developers to write their own software capable of configuring and streaming data from the
movement monitors. In addition, it also provides functions for converting the raw data files found on the
monitor's memory card into either a HDF5 (recommended) format or CSV. The SDK provides the same low
level interface to the hardware that TK Motion Manager is built upon.

11

3 Downloading the SDK

3 Downloading the SDK

To obtain the latest version of the SDK, download the following archive:
http://share.apdm.com/libraries/nexgen_sdk.zip

and unzip it to your desired location.

3.1 SDK Directory Structure

The SDK contains a number of folders useful to the developer. Their descriptions are as follows:

/doc Documentation for users, developers guide and API references.
/include | Header files to be included in C or C++ applications.
/libs Libraries (DLLs, SO’s, DYLIBS’s) to be dynamicly loaded into applications providing progra-

matic access to the hardware.
/samples | Sample applications in C, Java and MatLab utilizing the libraries.

/Java Java APIs for programatic access to hardware
/matlab Matlab prototypes allowing for access to DLLs, SO’s or DYLIBS’s

12

http://share.apdm.com/libraries/nexgen_sdk.zip

4 Software Tools and Libraries

4 Software Tools and Libraries

4.1 Programming Libraries

NexGen provides programming libraries to allow integration on a variety of operating systems and platforms.
The following operating systems and versions are supported as of Feb, 2010.

Language | Supported Operating Systems Comments
C/C++ Linux, 32bit
Linux, 64bit

Mac OSX 10.6, Snow Leopard
Mac OSX 10.5, Leopard
Windows XP, 32bit, SP2/SP3
Windows Vista, 64bit
Windows 7, 64bit

Java Linux, 32bit JNI Bindings
Mac OSX 10.6, Snow Leopard
Windows XP, 32bit

Windows Vista 64bit

Windows 7, 32/64bit

Matlab Windows 32bit Library Loading with C calls
Mac OSX 10.6, Snow Leopard

4.1.1 Development Environments

Dynamic libraries are provided, DLLs, DYLIB’s and SO’s for linking into applications. Any language or envior-
ment that can load dynamic libraries and call into said libraries should be useable with the dynamic libraries.
Most languages/development enviroments support this functionality.

e Windows / Visual Studio 2005 / MinGW / GCC
e Mac OSX/GCC
e Linux/GCC

13

4 Software Tools and Libraries

4.2 C API

4.2.1 Documentation

Included in the NexGen software distribution is function APl documentation, including descriptions of func-
tions purpose, parameters and return values. This can be found under “docs” in the software distribution.

4.2.2 Using the Host Libraries

The host libraries allow you to create handles to any given access point or docking station attached to the
system. With an AP handle or docking station handle, you can query the given device for information, and
send configuration commands to the given device. If there is an movement monitor attached to a docking
station, then you can also send commands to the movement monitor thru the docking station handle.

4.2.3 Headers
Two headers will be necessary to include in your project, apdm.h and apdm_types.h.
4.2.4 System Context

The host libraries provide the notion of a system context. A context is a logical collection of access points
and docking stations (movement monitors attached therein) that can be configured as a group and work
in concert with each other. The context allows you to correctly configure wireless channels and redundant
wireless streaming AP’s, as well as provide correlation of the samples sent out by all the sensors (correlation
in time by sync value).

The data type used for a context is: apdm_ctx_t

and can be allocated with the apdm_ctx_allocate_new_context () function, and freed with the
apdm_ctx_free_context () function.

4.2.5 Docking Station Handle

The data type used for a docking station handle is: apdm_device_handle_t

The easiest way to create a handle is to use the apdm_sensor_allocate_and_open() function, pass-

14

4 Software Tools and Libraries

ing in the index of the given docking station number that you want a handle on. Similarly, calling the
apdm_sensor_close_and_free_handle () function to cleanly close the handle and free it's respective mem-
ory.

4.2.6 Configuration of Movement Monitors on a Docking Station

The host libraries contain a number of functions, starting with apdm_sensor_cmd_XXXX() that are used to
configure movement monitors. Settings such as sampling rates, enabling and disabling different sensors,
configuration of wireless parameters etc can be done using thees function calls. See low level APl documen-
tation for details on these commands.

4.2.7 Access Point Handle

The data type used for an access point handle is: apdm_ap_handle_t

An AP handle can be allocated with the apdm_allocate_ap_handle() function, freed with the
apdm_free_ap_handle () function. Once a handle is allocated, you can open a given access point by index
using the apdm_ap_connect () function. Once you’ve connected, you can then send commands to the AP
and query the AP for information using AP specific functions.

Access Point specific functions are of the form with apdm_ap_XXXX().
4.2.8 Configuration of Synchronized Wireless Streaming & Logging Mode

The host libraries provide a function apdm_autoconfigure_devices_and_accesspoint4() that can be
used to configure a group of AP’s and movement monitors for streaming mode. After a context has been al-
located and initialized, and the apdm_ctx_open_all_access_points() function has been called with the re-
spective context, you can call auto configure to configure the system. Once the system is configured, you can
disconnect the movement monitors from the docking station to allow them to stream data, and begin to use
the apdm_ctx_get_next_access_point_record_list() and apdm_ctx_extract_data_by_device_id()
functions to stream data.

The maximum number of movement monitors in a single configuration is 36

The maximum number of access points in a single configuration is 6

15

4 Software Tools and Libraries

4.2.9 Variable Output Rates

Movement monitors can be configured to generated samples at a configureable rate. Movement monitors
can sample at 20, 32, 40, 64, 80 and 128 Hz. For each given output rate, there are specific decimation rates
that are valid. The table below indicates which combinations can be used.

Output Rate / Decimate | 1x1 | 2x1 | 2x2 | 5x1 | 4x2 | 5x2 | 4x4 | 5x4 | 8x4 | 8x5 | 8x8
20 valid | valid | valid valid valid valid

32 valid | valid | valid | valid | valid | valid valid valid

40 valid | valid | valid valid valid valid

64 valid | valid | valid | valid valid valid

80 valid | valid | valid valid valid

128 valid | valid valid valid

You can set the sampling rate and decimation rate on a movement monitor using the
apdm_sensor_cmd_config_set() function. Detailed documentation is provided in the API docs for the
function. The decimation rate can be changed in wireless streaming mode by pre-configuring the movement
monitors using the desired configurations, and calling the
apdm_autoconfigure_devices_and_accesspoint_wireless() function. Details are provided in the re-
spective APl documentation for the function.

4.2.10 Wireless Channel Selection

Movement monitors transmit data in the 2.4ghz wireless spectrum range. Channel zero corresponds to
roughly 2.4000ghz, and channel 90 corresponds to roughly 2.4900ghz. The 2.4ghz spectrum has many
other consumer electronic devices, such as WiFi routers, cordless phones and blue-tooth devices, that also
operate in this area of the spectrum. As such, it’s important to choose a channel that is not already in use by
another device.

The most common source of interference is from wireless network access points. You can determine the
channel that the WiFi router is running on and determine its corresponding frequency from the following
URL: http://en.wikipedia.org/wiki/IEEE_802.11

4.2.11 Configuration of Rapid Streaming Mode

You can find sample code for configuring rapid mode streaming in autoconfigure_rapid_streaming.cin
the samples directory of the SDK.

Configuration of rapid streaming mode is almost identical to that of normal streaming mode, with the excep-

tion of two settings that must be set to specific values.
16

http://en.wikipedia.org/wiki/IEEE_802.11

4 Software Tools and Libraries

To configure rapid streaming mode, call the apdm_ctx_autoconfigure_devices_and_accesspoint5()
function, making sure to set ‘decimation_rate’ to ‘APDM_DECIMATE_1x1’ , and ‘enable_sd_card’ to
‘false’.

There are two variants of rapid streaming mode. The first uses the correlation code provide by APDM, which
will emit sets of correlated samples, deal with duplicate transmissions, or cases where opals switch from one
AP to a 2nd. From the perspective of the application, this will be identical to other normal modes of streaming.
The 2nd mode, which will remove some additional latency (on the order of 5ms to 10ms), retrieves individual
samples as soon as they are available on the AP. However, in this mode of operation, the application will
have to deal with duplicate samples and gaps in the data if transient wireless/RF problems occur.

4.2.12 Rapid Streaming with Correlation

This mode of operation is identical to normal streaming mode, with the exception of configuring the system
to disable the SD card and to set the decimation rate to ‘ APDM-DECIMATE_1x1’.

4.2.13 Rapid Streaming without Correlation

This mode of operation requires slightly different library interfacing function calls. Example code can be
found in stream_data_rapid.c in the samples directory of the SDK. The basic function call sequence is as
follows:

apdm_ctx_allocate_new_context()
apdm_ctx_open_all_access_points()
apdm_ctx_flush_ap_fifos()
apdm_ctx_extract_next_sample() (called many times)
apdm_ctx_disconnect(context)

apdm_ctx_free_context(context)

4.2.14 Configuration of Synchronized Logging Mode

The host libraries provide a function, apdm_autoconfigure_mesh_sync()that will allow you to configure all
movement monitors attached to the host in mesh time synchronization and data logging mode.

In synchronized logging mode, the movement monitors will transmit and receive their current time values, to
and from each other such that their internal clocks all maintain the same notion of time.

There can be a maximum of 32 devices used in synchronized logging mode.

17

4 Software Tools and Libraries

4.2.15 Configuration of Low Power Logging Mode

Low power logging mode consists of enabling/disabling the sensors of interest on the movement monitor, and
disabling wireless. Wireless can be disabled with a call to apdm_sensor_cmd_config_set () and passing in
CONFIG_ENABLE_WIRELESS and a value of 0.

4.2.16 External Sync

The host libraries make available functions for manipulating and reading the 1/O signals on each AP. The func-
tions are as follows: apdm_ap_get_io_value(), apdm_ap_set_io_value(), apdm_ctx_ap_get_io_value(),
apdm_ctx_ap_set_io_value().

Using these functions, you can read the current value from the digital input signal and the analog input signal,
and you can set the values for the digital output signal and the analog output signal. The apdm.h header file
contains documentation on the exact input and output parameters for the 1/0O functions listed.

18

5 External Synchronization and I/O

5 External Synchronization and 1/O

The access point comes with external connectors that enable you to synchronize the recording of data in
TK Motion Manager with external equipment. This functionality only works when the system is configured in
one of the wireless streaming modes and the “Stream” dialog is open. The implementation is adaptable to a
number of scenarios. Here are some examples of things you can do:

e Trigger recording in TK Motion Manager when external events occur. You can use this functionality to
precisely synchronize your inertial recordings with, for example, recordings initiated on a camera based
motion capture system.

e Trigger external events when you start and stop recording in TK Motion Manager. You can use this
functionality to precisely synchronize your inertial recordings initiated in TK Motion Manager with, to
use another example, a video recording system.

e A combination of the two. For example, hitting the record button on a camera based motion capture
system could trigger recording in TK Motion Manager which could then trigger a video recording system.

5.1 Configuration

Specification of external synchronization options is performed through the “External Synchronization” tab in
the “Configuration” dialog. If multiple access points are being used, synchronization options are specified for
each access point individually so that you can determine which ones are receiving external signals and/or
sending external signals. Each access point can have its input and output triggers specified individually.
Input and output triggers can also be disabled through the configuration dialog.

5.2 Input Synchronization

Nt C—— RN St +V
RECORD RECORD
oV OV seeeennnncnnncss. Scccconecennses
Level, High Level, Low
NRVUR +V
" RECORD " " RECORD IJ
oV (0 V/PUTTRORRRRRIS | R I .
Edge, High Edge, Low

Input synchronization trigger types

19

5 External Synchronization and I/O

5.2.1 Input Triggers

The input trigger indicates the type of signal that will be input into the specified access point and how you
want TK Motion Manager to respond when using the “Stream” dialog. In the figure above, the four different
trigger types are shown. The solid black line represents the external synchronization signal being sent to
the access point. The blue shaded region represents the period that will be recorded in TK Motion Manager.
Input triggers are only processed when the “External Sync” option is specified in the “Record Duration” panel
of the “Stream” dialog.

5.2.2 Sample Selection with External Input Trigger Events

The time of the external input trigger events may not align exactly with the time of an individual samples
being collected in TK Motion Manager. If the start trigger event time does happen to align exactly with a
sample captured in TK Motion Manager, the first sample recorded will correspond exactly to the time of the
start trigger event. If these do not align exactly (as will generally be the case) the sample preceding the
start trigger event will be the first sample recorded. Similarly, if the stop trigger event aligns exactly with a
sample captured in TK Motion Manager, the last sample recorded will correspond exactly to the time of the
stop trigger event. If these do not align exactly, the sample following the start trigger event will be the last
sample recorded. This way, we guarantee that the recording captured in TK Motion Manager fully spans the
time period between the external input start and stop events, but no more.

5.2.3 Annotation of Externally Triggered Recordings

Note: Annotations are implemented for the HDF file format only. When an external “Start” trigger event is
detected, an annotation is added to the recording that indicates the name of the event (in this case “External
trigger start time”) along with the timestamp of the event in epoch microseconds. Similarly, when an external
“Stop” trigger event is detected, a timestamped annotation is added to the recording (in this case labeled as
the “External trigger stop time”). These annotations allow you to align the recording captured in TK Motion
Manager with your external events in the case where the external trigger event times do not exactly align with
the samples captured in your HDF file.

20

5 External Synchronization and I/O

5.3 Output Synchronization

E% 7 N— ' ————— +V
RECORD RECORD
oV ————— 0} 2 .
Level, High Level, Low
T SR] ——————— +V 3 '
" RECORD " " RECORD IJ
ov | y (O\VARTTIRSTTTINTIIITIL |,
Edge, High Edge, Low

Output synchronization trigger types

5.3.1 Output Triggers

The output trigger indicates the type of signal that will be generated by the specified access point when
recording is started and stopped through the streaming dialog in TK Motion Manager. The trigger types are
identical to the input trigger types, but in this case the solid black line in the figure above represents the signal
being output by the configured access point. The blue shaded region represents the period being recorded
in TK Motion Manager, initiated either through user selection of the start/stop buttons in the “Stream” dialog,
use of the wireless remote, or an external synchronization event. Unlike input triggers, output triggers are
processed even if the “External Sync” option is not specified in the “Record Duration” panel of the “Stream”
dialog.

5.4 Isolated External Interface Details

NexGen’s access points come fitted with a 6 pin digital I/O connector and a 4 pin analog I/O connector.
To connect an access point to your external equipment, you may have to create a custom cable that can
interface with both components. Below we provide the technical specifications necessary to complete this
task. Feel free to contact our technical support at techsupport@nexgenergo.com if you require assistance or
have additional questions.

The Isolated External Interface for the AP consists of an auxiliary power supply, two GPIO lines (one in, one
out), and an inter-AP sync signal. All signals in the isolated external interface section (including power and
ground) are isolated from the remainder of the board using an RF solution similar in operation to an opto-
isolator. Further, all signals in the isolated external interface are 5V tolerant and ESD protected beyond the
15kV human body model.

21

5 External Synchronization and I/O

The connectors used in the isolated interface consist of one standard female RCA, and one female 6 pin
mini-din connector. The RCA connector mates to almost any basic RCA cable similar to those used in audio
systems. When choosing an RCA mating connector, choose one that has uncovered bare shield spades to
allow the connector to fit fully into the recessed hollow in the AP body.

The 6 pin mini-din connector is similar to those used for older style PS/2 keyboards and mice. Choose a
connector that is small enough to fit fully inside the recessed hollow in the AP body. Some PS/2 extension
cables can be cut into excellent pigtails for this connector.

5.4.1 RCA Inter-AP Sync Connector

e RCA Connector: Digikey Part number RCP-021, CUI INC

e Center Pin: Inter-AP Sync
e Sheild: Isolated Ground

5.4.2 6 Pin Digital Input/Output Connector

e 6 Pin Mating Connector: Digikey part number CP-2060-ND, CUI Inc part number MD-60.

e 6 Pin Mating Pig Tail Cable: Digikey part number 839-1051-ND

o Note these connectors may need the outer shell trimmed to fit into the AP case, a better solution is
often pigtail cables that have over-molded ends and excellent strain relief.

AP 6 Pin Digital Connector

e Pin 1: Record In

e Pin 2: Output Voltage Select (when connected to positive(pin 6), I/O will be in 5 volt mode. 3.3 volt
mode otherwise).

e Pin 3: Isolated Ground (isolated gnd)

e Pin 4: Inter-AP synchronization output signal. 2.56khz square wave used for synchronizing timing
among multiple access points.

22

5 External Synchronization and I/O

e Pin 5: Record Out
e Pin 6: Isolated Vdd, unregulated, 3.3 volts or 5 volts depending on what what pin 2 is connected.

The auxiliary power supply is meant to provide for powered external interface solutions, allowing a small
circuit to be powered directly from the AP. Accessed via pin 6 of the mini-din connector, the auxiliary power
supply is rated for operation up to 250mW at 3.3V or 5V operation. While default operation is at 3.3V, 5V
operation can be selected by shorting pin 2 to pin 6 of the 6 pin mini-din connector.

The inter-AP sync signal is a 2.56kHz clock signal used to keep multiple AP configurations in sync with one
another. The inter-AP sync signal is available on the RCA connector, as well as pin 4 of the 6 pin mini-din
connector next to it. The signal is a square wave pulse that is driven by the 'master’ AP (usually the first AP
to enumerate) and received by up to seven additional APs (depending on output voltage selection and cable
length). In operation the signal is weakly pulled up to the isolated power rail by each AP in the system, and
driven directly to ground only by the 'master’ AP to produce the pulsed waveform.

Two GPIO lines are available, one input and one output. Both are pulled down by 47.5kOhm resistors,
and each have a series resistance of nearly 1.2kOhm due to the methods used to protect the lines from
overvoltage/overcurrent conditions. The input signal is available on pin 1 of the 6 pin mini-din connector
and is typically used to start/stop data collection by the host PC. Driving the line high to ‘record’ and low
to 'not-record’ is the default operation, though this is user selectable in software to allow for other modes
of operation. Similar to the input line, the output line is typically used to start/stop data capture on external
systems. The line is driven high by the AP when ’start recording’ is selected in software, and driven low when
recording stops. Opposite high/low operation can be software selected at time of configuration for both input
and output signals.

Note that the AP also contains a non-isolated four pin mini-din connector, however all signals there are
currently reserved for future expansion.

23

5 External Synchronization and I/O

5.4.3 4 Pin Analog Input/Output Connector

¢ 4 Pin Mating Connector: Digikey part number CP-2040-ND, CUI Inc part number MD-40
¢ 4 Pin Mating Pig Tail Cable: Digikey part number 839-1049-ND

AP 4 Pin Analog Connector

Pin 1: Analog In (0 to 6 volts)

Pin 2: Analog Out (0 to 5 volts or 0 to 3.3 volts depending on software controled configuration)

Pin 3: No Connect (reserved for future use, avoid connecting this pin)

Pin 4: Ground (gnd). This is the same ground as USB, and depending on how your USB hub and/or
laptop are designed electrically, may also be the same ground as the hub and laptop. Consideration
should be taken for ground loops.

é; RCA
=)
500 ApAA ISO_APSYNC

5.4.4 Schematic

Isolated Section Equivalent Circuit

L| YVVY
ISO_VDD -
_ v =PD
1 }IPOWE’
< ISQ_RECORD_QUT L2k A @
STE ISO_APSYNC _OUT
So¢ ISO_APSYNG IN
3o 1SO_RECORD.IN 126 30 IS0 BCRO/N MINI-DIN CUI MDB0-SM
Coupler ISO_V-OUT SEL - 2K Apapy ISQ VOLT SEL
N Vel ISO_GND 2|/ 0 5
oD 50 GND e e ISO_APSYNC J Ut
Galvanic_lsolator NS IS0 RCRD/OUT] s
1 ~ vﬁ- < LSO VDD g 2 1
ISO_GND -
L L L L

Short ISO_VDD to ISO_VOLT_SELECT to select 5v output

24

5 External Synchronization and I/O

5.4.5 Converting .APDM files to HDF5 or CSV

Data stored on the movement monitor is in a binary .apdm format. NexGen libraries provide functionality
to convert this data to a more usable format, apply calibration to the raw data, and generate orientation
estimates. apdm_process_raw() is used to convert .apdm files to HDF5 or CSV. Raw data can also be
optionally saved.

The basic process is as follows:

1. Create a file with apdm_create_file_hdf() or apdm_create_file_csv().

2. Get the device info structure for each device that’s streaming using the
apdm_sensor_populate_device_info() function.

3. Pass an array of records and device info structures to the apdm_write_record_hdf() or
apdm_write_record_csv() function for each new sample.

4. Close the data file with apdm_close_file_hdf() or apdm_close_file_csv() when done.

5.4.6 Return Codes

Most library functions return a value of type int, which has a value from enumAPDM_Status (defined in
apdm_types.h), which indicates success or failure code of the given function that was called. A convenience
function, apdm_strerror () is provided for converting these error codes to strings if necessary. Refer to
function specific documentation for the details of each function.

5.4.7 Logging

The NexGen libraries have logging information that is generated at various points of it’s internal processing.
Each log event that occurs has a specified severity, all logging funnels through a single piece of common
infrastructure. By default, log messages are sent to STDOUT, but by calling apdm_set_log_file() you can
re-direct logging output to a file.

5.4.8 Threading

The NexGen host libraries are not thread safe. Thread safety, synchronization and enforcement of mutual
exclusion are left up to the application in which the libraries are to be used.

25

5 External Synchronization and I/O

5.5 Wireless Buffering and Data Correlation

In wireless streaming mode, the system utilizes numerous levels of buffering, including on-device buffering,
in access point buffering, and buffering in the host libraries. There are many reasons that this buffing is
necessary, including temporary wireless issues, scenarios where the host application does not retrieve data
from the access point and times when the application wants to wait a short amount of time for a movement
monitor to retransmit data after the wireless issues pass.

Due to the hardware level properties of the system, it becomes necessary to process data from sensors and
access points knowing about potential transient problems at the hardware level. Some of the issues include
the following:

¢ Duplicate data transmission by a sensor to one or more access points in the event that the sensor does
not receive the ACK from the access point

e Variable delay in the relative streams of data from the movement sensors. e.g. one sensor may be
transmitting data that is older then then the other sensors while it is catching up from a transient wireless
problem.

e Missing data from a sensor, in the event that the sensor is turned off, or goes out of range for an
extended period of time.

By in large, when the system context is used for streaming data, it will resolve these issues prior to emitting
data from the libraries. There are some configuration parameters that will affect the behavior of the libraries
with regard to timing and potentially missing data.

apdm_ctx_sync_record_list_head()

Before the application begins to received data, it should call the apdm_ctx_sync_record_list_head()
function. This will cause the host libraries and access point to clear out all it's buffers, stream in a few
samples such that a subsequent call to apdm_ctx_get_next_access_point_record_list() will return a
full sample set, with data from all sensors in the system.

If this function is not called, you may get old data, or partial sets of data from a call to
apdm_ctx_get_next_access_point_record_list()

26

5 External Synchronization and I/O

5.5.1 Max Delay / Max Latency

During auto configuration, and via library calls to apdm_ctx_set_max_sample_delay_seconds() you can
specify the maximum amount of time to wait for sample(s) to be re-transmitted from an movement sensor.

This setting has some important implications with regards to data reliability and the latency of data by the
time it's received by the user application.

¢ |f a movement monitor is unable to transmit samples to an access point, the host libraries will stall their
data output, waiting until max-latency seconds elapse, before giving up and emitting a partial sample
set. E.G. If there are 6 sensors configured, and one of them is unable to transmit, the libraries will emit
5 samples, and indicate that they have missed the 6th sample.

e For as long as the given sensor is having problems transmitting, the host libraries will continue to delay
outputting of data until the max-latency threshold for data age has elapses. So, if you have max-latency
set to 15 seconds, and a sensor goes out of range, you'll find an initial pause of 15 seconds while the
max-latency period elapses, then you will continue to receive data from the libraries, but as long as the
sensor cannot transmit, the data will be 15 seconds old.

e The default max-latency setting is 15 seconds

5.6 Real-time Systems

The phrase "realtime” is a context sensitive phrase, which according to Wikipedia has a few dozen meanings
depending on when and where it's used (http://en.wikipedia.org/wiki/Real-time). As it applies to
data streaming and possible uses of opals, there are two classes that will need to be distinguished.

1. The computer science definition, where real-time refers to a system that has hard timing deadlines,
which if not meet, will cause the system to behave in an undesirable manor or fail outright.
(see http://en.wikipedia.org/wiki/Real-time_computing)

2. The end-user description, which often means “really fast”, or "fast enough that a human cannot notice
the latency”. In this context, the consequences of not satisfying the timing requirements are no more
then an annoyance to the end user. This is often the case with strip-charting of data, or on screen visual
feedback to a user.

The engineering techniques used to solve the two classes of problems above are significantly different.

In the case of an end-user real-time system, it’s fairly simple. Almost all mainstream operating systems and
hardware are capable of operating fast enough, and with low enough latency, to satisfy what a human can
notice with timing.

27

http://en.wikipedia.org/wiki/Real-time
http://en.wikipedia.org/wiki/Real-time_computing

5 External Synchronization and I/O

In the case of a hard real time system, it requires an operating system or embedded system that is capable
of providing timing guarantees. This is not a normal operating system such as Windows or Mac OS. With
the appropriate configuration, Linux can provide real-time functionality. There are many real-time operating
systems in existence

(see http://en.wikipedia.org/wiki/List_of real-time_operating_systems). With respect to sup-
ported operating systems, Linux is the only operating system, also supporting real-time features, that can
be used with APDM hardware. If your intention is to use opals as sensor data to control something in
real time, you will likely find the subject of "closed loop feedback control systems” to be useful (http:
//en.wikipedia.org/wiki/Control_theory).

5.7 Timing and Protocol Properties

If APDM hardware is to be used in a hard real-time system, the developer must understand exactly what
timing properties are provided by the APDM software/hardware stack.

1. The USB bus was not intended to be used in hard real time systems. However, depending on the
requirements of the problem at hand, the USB bus may be good enough if the limitations of the bus are
taken into account in the application.

2. Transfers between the host and the access point are done via USB bulk transfers. Bulk transfers
provided guaranteed delivery, but not guaranteed timing. In general, on a Linux machine, it takes 1ms
to 2ms to do a transfer from the AP to the host computer. This 1Tms to 2ms is not guaranteed however,
due to the underlying properties of USB bulk transfers. There are some things that can be done to
increase the probability of transfers falling into this latency range, such as making sure that each AP is
on it's own root hub of the host.

3. The issue of late data, or missing data all together, is not limited to USB. In fact, almost all buses
can have some scenario in which data will be late and/or not get to the recipient. In buses that are
designed for critical controls, this tends to be due to hardware failures (electrical problem on the bus,
broken wires, bad bus transceiver etc). In all cases, the application should handle this in a manor that
is reasonable and appropriate for the problem at hand.

4. The opals are transmitting data in the 2.40-2.49 GHz wireless spectrum. There are many devices that
operate in this frequency range that can cause interference and problems during data transmission. If
this occurs, the opal has logic to retry the transmission of the sample a certain number of times before
giving up. In the event that it gives up, the host application will see a gap in the data (e.g. a missing
sample). The application should handle this in a manor that is reasonable and appropriate for the
problem at hand.

5. Sometimes the system will be running in a marginal wireless environment, or will encounter RF asym-
metries during the TX/RX process. This can have an effect of an opal successfully transmitting data
to the AP, and the opal not receiving the ACK from the AP. In this scenario, the opal will think that the

28

http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Control_theory

5 External Synchronization and I/O

sample didn’t get through to the AP, and re-transmit the sample. Usually, the second time, the ACK
will be RX’ed by the opal. From the perspective of the host application however, this will manifest as a
duplicate sample (based on the 64bit synchronization value in the sample). Again, the application will
need to handle this in an appropriate manor for the problem at hand.

6. The opals use time division multiplexing when transmitting data to the AP’s. During a given opals time
slice, the opal has multiple opportunities to transmit data. When looking at the latency of samples as
they come in, you may observe burstiness in the latencies, in the range of 10ms differences in latency
values as they come in from the AP.

5.8 DLLs, DYLIB’s and SO’s

Depending on platform, a DLL, DYLIB or SO will be linked in with your application at run time. These library
files provide access to all the functions necessary to configure and communicate with movement monitors,
docking stations and access points.

These libraries are written in C and provide standard C-symbols so as to facilitate linking with as many other
languages, systems and platforms as possible.

Common ways of getting the dynamic library to load include, but are not limited to the following:

e compile time flags in your build system and making available the dynamic library for the system in one
of the standard library search paths
e a call to the LoadLibrary() function on Microsoft platforms

5.8.1 Java

Java language bindings are provided with the SDK. These provide an object oriented interface to access
points, docking stations, movement monitors and contexts. When using the Java bindings, you'll need to
make sure the DLL/DYLIB/SO library file is in one of the library search paths. Environmental variables can
be set to achieve this or command line parameters can be passed into the JVM to indicate where it should
search for these libraries.

5.8.2 Other Systems
Many other systems, such as MatLab and LabView provide the ability to load 3rd party DLLs and call func-

tions provided in those DLLs. Please refer to the documentation provided by your application or system on
how to load and call functions from external libraries.

29

6 Programming Examples

6 Programming Examples

6.1 Example Code Provided with the SDK

The host library distribution provides sample code under dist/samples. Samples include source code and
pre-compiled binaries for the respective applications. The sample applications of most interest are as follows:

e autoconfigure_system.c: This is used to configure a set of attached movement monitors and access
points into wireless streaming mode.

e autoconfigure_rapid_streaming.c: This is used to configure a set of attached movement monitors
and access points into low-latency rapid streaming mode.

e stream_data.c: After a system has been autoconfigured and is streaming data to its respective access
points, this sample will stream data off the access points and print the data, correctly grouped, to the
console.

e stream_data_rapid.c: After a system has been autoconfigured in rapid mode, this demonstrates
retreiving data using the lowest latency mode possible, however it uses in the libraries in such as was
as correlation is not provided by the host libraries.

e autoconfigure_mesh.c: This program is used to configure a set of movement monitors into mesh
time synchronization and logging mode.

e convert_raw.c: This program is used to convert raw ”.apdm” files from a movement monitor into a
CSV or HDF output file.

e configure_low_power_mode.c: This program is used to configure any attached movement monitors
into low power, non-streaming mode.

6.2 Simple Configuration and Streaming Example

6.2.1 High Level Psuedocode

1. Allocate a handle:

apdm_ctx_allocate_new_context()

2. Using the handle, open access points attached to the system:
apdm_ctx_open_all_access_points()

3. Autoconfigure the access point(s) and attached movement monitors.
apdm_autoconfigure_devices_and_accesspoint2()

30

6 Programming Examples

4. Set the max latency value in the libraries.
apdm_ctx_set_max_sample_delay_seconds()

5. Get the attached movement monitor ID list, if useful:
apdm_ctx_get_device_id_list()

6. Synchronize the record head list in the libraries.
apdm_ctx_sync_record_list_head()

7. Collect a list of sensor readings, from all movement monitors, for the same sample point in time. This
is usually used within loop or as a regular event.

apdm_ctx_get_next_access_point_record_list()

8. Extract data readings on a per-movement monitor basis, by movement monitor ID number.
apdm_ctx_extract_data_by_device_id()

9. Disconnect from the attached access points and movement monitors
apdm_ctx_disconnect()

10. Free the allocated context
apdm_ctx_free_context()

6.2.2 C Programming Example

The example below implements the above pseudocode using the C programming language. This example is
a combination of the autoconfigure_system.c and stream_data. c programs included in the SDK sample
code. Much of the verbose output and error handling was removed for this example to keep it short and tidy.

#include "apdm.h"
#include <stdio.h>

#include <inttypes.h>

int main(void)

{

const int32_t num_itterations = 20000000;
int chan = 90;

int r = 0;

apdm_ctx_t apdm_context = ADPM_DEVICE_COMMUNICATIONS_HANDLE_NEW_T_INITIALIZER;
31

6 Programming Examples

apdm_context = apdm_ctx_allocate_new_context();

// Open the context
r = apdm_ctx_open_all_access_points(apdm_context);

// Set the maximum delay for data, the maximum time the application is willing
// to wait for data from a given sensor to come in.
r = apdm_ctx_set_max_sample_delay_seconds(apdm_context, APDM_DEFAULT_MAX_LATENCY_SECONDS);

// Configure all attached monitors to stream data

r = apdm_autoconfigure_devices_and_accesspoint4(apdm_context, chan, true, false, true, true, true,

// Wait for the user to undock their monitors before streaming.
printf("\n\nRemove the monitors from their docks, wait until the AP\n");
printf("starts blinking green, and press the enter key to continue...\n");
getchar(Q);

// Fetch the list of monitor IDs
uint32_t deviceIdList[APDM_MAX_NUMBER_OF_SENSORS];
r = apdm_ctx_get_device_id_list(apdm_context, deviceIdList, APDM_MAX_ NUMBER_OF_SENSORS);

// Define the record into which sensor data is to be stored.

apdm_record_t raw_rec;

r = apdm_ctx_sync_record_list_head(apdm_context);

for (int 1 = 0; i < num_itterations; i++) {
// Request the next full set of samples from the AP. All samples returned will be
// from the same point in time for all sensors configured in the system.

r = apdm_ctx_get_next_access_point_record_list(apdm_context);

if(r == APDM_NO_MORE_DATA) {
// The host libraries have not received a full set of data,
// wait a while for more data to stream in from the monitors.
apdm_usleep(4000);//Note: this is a sensitive number while in rapid streaming mode
continue;
} else if(r !'= APDM_OK) {
printf("ERROR encountered: %d, '%s'\n", r, apdm_strerror(r));
break;
} else {
// Successfully got a set of monitor samples.

printf(" \n");
printf("r = %d\n", r);

32

true);

6 Programming Examples

for(int j = ®; j < APDM_MAX_NUMBER_OF_SENSORS; j++) {
if(deviceIdList[j] == 0) {

continue;

// Get the sensor data for the given device ID

int ret = apdm_ctx_extract_data_by_device_id(apdm_context, deviceIdList[j], &raw_rec);

if(ret != APDM_OK) {
if(ret == APDM_NO_MORE_DATA) {
// Depending on the error handling mode, this monitor may or may not have data for it.
printf("No More data for device id %d...\n", deviceIdList[j]);
}

continue;

// Print some of the calibrated data to the screen
if(raw_rec.accl_isPopulated) {
printf("si, ");

printf("%.3f, %.3f, %.3f, ", raw_rec.accl_x_axis_si, raw_rec.accl_y_axis_si, raw_rec.accl_z_axis_si);
printf("%.3f, %.3f, %.3f, ", raw_rec.gyro_x_axis_si, raw_rec.gyro_y_axis_si, raw_rec.gyro_z_axis_si);
printf("%.3f, %.3f, %.3f, ", raw_rec.mag_x_axis_si, raw_rec.mag_y_axis_si, raw_rec.mag_z_axis_si);

printf("\n");

apdm_ctx_disconnect (apdm_context);
apdm_ctx_free_context(apdm_context);

return(0®);

}

6.2.3 Java Programming Example

An example program for configuring and streaming data from a Java application is provided below. Functions
available in the Java libraries are usually mappings of the corresponding c-functions, and more detailed doc-
umentation can be found in the dOxygen documentation. This example is equivalent to the above example
provided in C.

33

6 Programming Examples

import java.util.List;
import com.apdm.APDMNoMoreDataException;
import com.apdm.Context;

import com.apdm.RecordRaw;

public class StreamDataSample {
public static void main(String args[]) throws Exception {
apAutoConfig(Q);
System.out.println("Please remove monitors from their docks and press enter...");
System.in.read();
streamData();
}
public static void apAutoConfig() throws Exception {
Context context = Context.getInstance();
context.open();
context.autoConfigureDevicesAndAccessPoint3(80, true, false);
context.close();
}
public static void streamData() throws Exception {
Context context = Context.getInstance();
context.open();
context.setMaxLatency(15);
// Call this many times to stream data
for (int i = 0; i < 100; i++) {
List<RecordRaw> records = null;
try {
records = context.getNextRecordList();
} catch (APDMNoMoreDataException ex) {
Thread.sleep(100);

}
if (records != null) {
System.out.println(" ");
for (RecordRaw rec : records) {
System.out.println(rec.toString());
}
}

}

context.close();

34

6 Programming Examples

6.2.4 Matlab Programming Example

An example program for configuring and streaming data from within Matlab is provided below. This example
is equivalent to the above examples, but also includes a simple real-time plot of the x-axis accelerometer.

function StreamData

% Load the APDM library

%directory containing apdm dynamic library and apdmLoad
libdir = '."';

d = pwd;
cd (1libdir);
if (libisloaded('libapdm') == 0)

[notfound, warnings] = loadlibrary('libapdm', @apdmLoad);
else

unloadlibrary('libapdm')

[notfound, warnings] = loadlibrary('libapdm', @apdmLoad);
end
cd(d);

% Create and allocate memory and pointers for data structures that will be

% used while using the access point
h = calllib('libapdm', 'apdm_ctx_allocate_new_context');

rec = libstruct('apdm_record_t');

recPtr = libpointer('apdm_record_t', rec);
recPtr.Value.accl_isPopulated = 0;
get(rec);

retCode = calllib('libapdm', 'apdm_open_all_access_points', h);
if retCode "= 0
calllib('libapdm', 'apdm_ctx_disconnect', h);
calllib('libapdm', 'apdm_ctx_free_context', h);
clear all;
unloadlibrary('libapdm');
ME = MException('StreamData:error', 'Unable to connect to access point');
throw(ME)
end

msgHandle = msgbox('Plug in your hardware and click OK to autoconfigure.', 'Autoconfiguration');

35

6 Programming Examples

uiwait(msgHandle);

calllib('libapdm', 'apdm_autoconfigure_devices_and_accesspoint_wireless', h, 80);

msgHandle = msgbox('Done configuring. Undock your monitors and click OK to continue.',...
'Autoconfiguration Complete');

uiwait(msgHandle);

calllib('libapdm', 'apdm_ctx_set_error_handling _mode', h, 1);

% Prepare the strip chart

fs = 128;

nBuffer = 2*fs;

[res, jnk,nMonitors] = calllib('libapdm', 'apdm_ctx_get_expected_number_of_sensors2', h, 0);
dataBuffer = nan(nBuffer,9,nMonitors);

fh = figure('integerhandle', 'off');

%Setup a strip chart plot for the x accelerometer
1h = zeros(nMonitors,1);
for cPlot = 1:nMonitors
1h(cPlot) = plot((-nBuffer:-1)/fs,dataBuffer(:,1,cPlot));
hold all;
xlabel('Time (s)');
ylabel('X Acceleration (m/s"2)');
end

iBuffer = 1;
loopCounter = 1;

disp('synchronizing data');

res = calllib('libapdm', 'apdm_ctx_sync_record_list_head', h);

if retCode "= 0

calllib('libapdm', 'apdm_ctx_disconnect', h);

calllib('libapdm', 'apdm_ctx_free_context', h);

clear all;

unloadlibrary('libapdm');

ME = MException('StreamData:error', 'Unable to sync record list');
throw(ME)

end

try
while ishandle(fh)

% Retreive the next full set of sample data, the given sample will

% contain data from all sensor devices

36

statusCode = calllib('libapdm',

if statusCode

continue

end

loopCounter

if statusCode

loopCounter +

1;

6 Programming Examples

'apdm_ctx_get_next_access_point_record_list', h);

== 4 % No more data

== 0 % Got more data

for deviceIndexNumber = 1:nMonitors

end

deviceIdToFetch = calllib('libapdm’,

h, deviceIndexNumber-1);

if deviceIdToFetch "= 0

end

statusCode = calllib('libapdm',

h, deviceIdToFetch, recPtr);

if deviceIdToFetch "= 0 && statusCode == 0
% Adjust strip chart buffers accordingly

else % Exceeded the configured maximum latency

end

dataBuffer (iBuffer,
dataBuffer(iBuffer,
dataBuffer(iBuffer,
dataBuffer (iBuffer,
dataBuffer (iBuffer,
dataBuffer(iBuffer,
dataBuffer(iBuffer,
dataBuffer (iBuffer,
dataBuffer(iBuffer,

dataBuffer (iBuffer,
dataBuffer(iBuffer,
dataBuffer(iBuffer,
dataBuffer(iBuffer,
dataBuffer (iBuffer,
dataBuffer(iBuffer,
dataBuffer(iBuffer,
dataBuffer (iBuffer,
dataBuffer (iBuffer,

iBuffer = iBuffer + 1;
if iBuffer > nBuffer

1, deviceIndexNumber) =

deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)

deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)
deviceIndexNumber)

nan;
nan;
nan;
nan;
nan;
nan;
nan;
nan;

nan;

37

double(recPtr.
double(recPtr.
double(recPtr.
double(recPtr.
double(recPtr.
double(recPtr.
double(recPtr.
double(recPtr.
double(recPtr.

Value.
Value.
Value.
Value.
Value.
Value.
Value.
Value.
Value.

'apdm_ctx_get_device_id_by_index',

'apdm_ctx_extract_data_by_device_id"',

accl_x_axis_si);
accl_y_axis_si);
accl_z_axis_si);
gyro_x_axis_si);
gyro_y_axis_si);
gyro_z_axis_si);
mag_x_axis_si);

mag_y_axis_si);

mag_z_axis_si);

so stopped waiting for this sample

6 Programming Examples

iBuffer = 1;

end

end

if mod(loopCounter, 20) == 0 %Update plot every 20 samples
dbshift = circshift(dataBuffer, [-(iBuffer-1), 0, 0]1);
for iMonitor = 1l:nMonitors
set(lh(iMonitor), 'ydata', dbshift(:,1,iMonitor));

end
drawnow;

end

end

calllib('libapdm', 'apdm_ctx_disconnect', h);

calllib('libapdm', 'apdm_ctx_free_context', h);

catch ME
% Close the device gracefully, if this is omited then the device may
% not re-open correctly on a subsiquent open call.
calllib('libapdm', 'apdm_ctx_disconnect', h);
calllib('libapdm', 'apdm_ctx_free_context', h);
calllib('libapdm', 'apdm_exit');
unloadlibrary('libapdm');
ME.identifier
ME.stack
return

end

clear all;

% Unload the library
calllib('libapdm', 'apdm_exit');
unloadlibrary('libapdm');

38

7 Working with HDF5 Files

7 Working with HDFS5 Files

HDF5 is the preferred format for storing NexGen movement monitor data. It is a standard format for scientific
data that is efficient and widely supported. It uses less space than CSV, is faster to load, and supports more
structured data. This section will cover the organization of the NexGen movement monitor data and the
basics of reading HDF5 files in MATLAB.

7.1 HDFView

A free program called HDFView (http://www.hdfgroup.org/hdf-java-html/hdfview/) can be used to
explore, plot, and export this data into other formats. A variety of free open source tools for working with HDF
files are also available at http://www.hdfgroup.org/HDF5/release/obtain5.html.

7.2 Data Organization

HDF5 files are organized like a file structure. The root of the file contains two attributes. One is a list of
monitor IDs that have data stored in this file. The other is a version number for the organization of the HDF
5 file.

7.3 File Structure

7.3.1 Version 3

¢ MonitorLabelList Attribute containing an array of monitor labels in the same order as the CaseldList

e CaseldList Attribute containing an array of monitor case IDs in the same order as the MonitorLabelList
FileFormatVersion Attribute containing the file format version (3)

e Annotations Table containing annotations

— Time Annotation time in epoch microseconds
— Case ID A movement monitor case ID associated with the annotation
— Annotation The annotation string

AA-XXXXXX A group is included in the file for each monitor in the CaseldList, with the name equal to the case ID

— SampleRate Attribute containing the output data rate for the monitor

— DecimationFactor Decimation factor for the monitor’s internal processing

— ModulelD The module ID for the monitor

— TimeGood Flag indicating whether the time has been set on the monitor since it powered on

— RecordingMode One of: "Wireless streaming”, "Synchronized logging”, or "Unsynchronized logging”

— DataMode Indicates whether the data was retrieved wirelessly or copied from the monitor’s internal storage while
docked. One of: "Streamed wirelessly” or “"Logged to monitor”

— AccelerometersEnabled 1 for enabled, 0 for disabled
39

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.hdfgroup.org/HDF5/release/obtain5.html

7 Working with HDF5 Files

— GyroscopesEnabled 1 for enabled, 0 for disabled
— MagnetometersEnabled 1 for enabled, O for disabled
— DecimationBypass Internal use, deprecated
— CalibrationVersion Version of the calibration data used to convert from raw samples to calibrated Sl units
— VersionString1 Firmware version string 1
— VersionString2 Firmware version string 2
— VersionString3 Firmware version string 3
— CalibratedDataPopulated 1 for populated, 0 for unpopulated
— LocalTimeOffset Time in milliseconds to add to UTC to convert to local time
— SyncValue Dataset containing the internal sync value for each sample
» Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1, 1970 UTC)
— Time Dataset containing a timestamp for each sample
» Units Attribute string containing the units (microseconds since 0:00 Jan 1, 1970 UTC)
— ButtonStatus Dataset containing the button status for each sample (1==pressed, O==unpressed)
— Calibrated Group containing calibrated data
«» Accelerometers Dataset containing accelerometer data (Nx3)
- Units Attribute string containing the accelerometer units (m/s?)
- Range Attribute containing the range setting for the accelerometer (2g or 6g)
» Gyroscopes Dataset containing gyroscope data (Nx3)
- Units Attribute string containing the gyroscope units (rad/s)
» Magnetometers Dataset containing magnetometer data (Nx3)
- Units Attribute string containing the magnetometer units (uT)
» Temperature Dataset containing the temperature (Nx1)
- Units Attribute string containing the temperature units (°C)
» TemperatureDerivative Dataset containing the temperature derivative (Nx1)
- Units Attribute string containing the temperature derivative units (°C/s)
» Orientation Dataset containing the orientation quaternion (Nx4). The orientation is relative to a (magnetic) north,
west, up reference frame. The scalar component of the quaternion is the first element.
— Raw Group containing raw data if selected during import
» Accelerometers
» Gyroscopes
« Magnetometers
» DataFlags
« OptData
« Temperature
« TemperatureDerivative

7.3.2 Version 2

MonitorLabelList Attribute containing an array of monitor labels in the same order as the CaseldList
CaseldList Attribute containing an array of monitor case IDs in the same order as the MonitorLabelList
FileFormatVersion Attribute containing the file format version (2)

Annotations Table containing annotations

40

7 Working with HDF5 Files

— Time Annotation time in epoch microseconds
— Case ID A movement monitor case ID associated with the annotation
— Annotation The annotation string

o AA-XXXXXX A group is included in the file for each monitor in the CaseldList, with the name equal to the case ID

— SampleRate Attribute containing the output data rate for the monitor
— DecimationFactor Decimation factor for the monitor’s internal processing
— ModulelD The module ID for the monitor
— TimeGood Flag indicating whether the time has been set on the monitor since it powered on
— RecordingMode One of: "Wireless streaming”, "Synchronized logging”, or "Unsynchronized logging”
— DataMode Indicates whether the data was retrieved wirelessly or copied from the monitor’s internal storage while
docked. One of: "Streamed wirelessly” or "Logged to monitor”
— AccelerometersEnabled 1 for enabled, O for disabled
— GyroscopesEnabled 1 for enabled, 0 for disabled
— MagnetometersEnabled 1 for enabled, 0 for disabled
— DecimationBypass Internal use, deprecated
— CalibrationVersion Version of the calibration data used to convert from raw samples to calibrated Sl units
— VersionString1 Firmware version string 1
— VersionString2 Firmware version string 2
— VersionString3 Firmware version string 3
— CalibratedDataPopulated 1 for populated, 0 for unpopulated
— LocalTimeOffset Time in milliseconds to add to UTC to convert to local time
— SyncValue Dataset containing the internal sync value for each sample
» Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1, 1970 UTC)
— Time Dataset containing a timestamp for each sample
» Units Attribute string containing the units (microseconds since 0:00 Jan 1, 1970 UTC)
— Calibrated Group containing calibrated data
» Accelerometers Dataset containing accelerometer data (Nx3)

- Units Attribute string containing the accelerometer units (m/s?)
- Range Attribute containing the range setting for the accelerometer (2g or 6g)

« Gyroscopes Dataset containing gyroscope data (Nx3)
- Units Attribute string containing the gyroscope units (rad/s)
» Magnetometers Dataset containing magnetometer data (Nx3)
- Units Attribute string containing the magnetometer units (uT)
« Temperature Dataset containing the temperature (Nx1)
- Units Attribute string containing the temperature units (°C)
« TemperatureDerivative Dataset containing the temperature derivative (Nx1)
- Units Attribute string containing the temperature derivative units (°C/s)
— Raw Group containing raw data if selected during import

» Accelerometers
» Gyroscopes

» Magnetometers
» DataFlags

» OptData

41

7 Working with HDF5 Files

» Temperature
» TemperatureDerivative

7.3.3 Version 1

This version is deprecated. All new files created will use the most recent version.

e Device_List Attribute containing a list of monitors present in the file
o File_Format_Version Attribute containing the file version
e Annotations Table containing annotations

— Time Annotation time in epoch microseconds
— Device ID A movement monitor ID associated with the annotation
— Annotation The annotation string

e Opal_xxx/ Group containing information about and data from monitor ID xxx

— Sample_Rate Attribute containing the output data rate for the monitor

— Decimation_Factor Decimation factor for the monitor’s internal processing

— Time_Good Flag indicating whether the monitor has had its time set since turning on

— Decimation_Bypass Internal use, deprecated

— Calibration_Version Version of the calibration data used to convert from raw samples to calibrated Sl units
— Version_String1 Firmware version string 1

— Version_String2 Firmware version string 2

— Version_String3 Firmware version string 3

— Acceleration Dataset containing data from the accelerometers (Nx3)

« Units Attribute string containing the acceleration units (m/s?)
— Angular_Velocity Dataset containing data from the gyroscopes (Nx3)
» Units Attribute string containing the angular velocity units (rad/s)
— Magnetic_Field Dataset containing data from the magnetometers (Nx3)
» Units Attribute string containing the magnetic field units (a.u.)
— Temperature Dataset containing the temperature of the monitor (Nx1)
» Units Attribute string containing the temperature units (°C)
— Temperature _Derivative Dataset containing the rate of change of temperature
» Units Attribute string containing the temperature derivative units (°C/s)
— Sync_Value Dataset containing the internal timestamp of each sample

« Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1, 1970 UTC)
» Time Dataset containing the time for each sample in microseconds since 0:00 Jan 1, 1970 UTC

Additional fields present when raw data is also stored:

e Opal XX/

— Calibration_Data Attribute containing binary block of calibration data
— Raw_File_Version Attribute containing the version string of the raw file (if this was converted from a .apdm file instead
of streamed)

42

7 Working with HDF5 Files

— Accelerometers_Raw Dataset containing raw accelerometer data (Nx3)

— Gyroscopes_Raw Dataset containing raw gyroscope data (Nx3)

— Magnetometers_Raw Dataset containing raw magnetometer data (Nx3)

— Data_Flags Dataset containing flags used for processing the raw data

— Opt_Data Dataset containing several measurements taken at a low data rate

— Temperature_Raw Dataset containing lowpass filtered, but uncalibrated temperature data (Nx1)

7.4 Working with HDF 5 in MATLAB

MATLAB contains two high level functions for working with HDF5 files. Additional help and examples are
included in the built in help documentation for these functions.

hdf5info reads the structure of the file and all of the attribute values and returns them in an easy to browse
MATLAB structure.

hdf5read reads a complete dataset or attribute from the HDF5 file.

Additionally, one more high level helper function is included with the NexGen movement monitor software.
This function also contains built in help documentation and examples.

hdf5readslab reads a portion of a dataset from the HDF5 file.

7.5 Examples

Below is simple example of loading acceleration data from an NexGen movement monitor HDF5 file (version
2 or later) in MATLAB. For version 1 files, the dataset paths simply need to be changed to match the format
listed above.

filename = 'example.h5';
try
vers = hdfS5read(filename, '/FileFormatVersion');
catch
try
vers = hdfS5read(filename, '/File_Format_Version');
catch
error('Couldn''t determine file format');
end
end
if vers< 2
error('This example only works with version 2 or later of the data file')

end

43

7 Working with HDF5 Files

caseldList = hdfS5read(filename, '/CaseIdList');

groupName = caseIdList(1l).data;

accPath = [groupName '/Calibrated/Accelerometers'];

fs = hdfSread(filename, [groupName '/SampleRate']);

fs = double(fs);

acc = hdfS5read(filename, accPath)'; %Transposed to make Nx3 in MATLAB}
t = (1l:size(acc,1))/fs;

figure;

plot(t,acc);

A more complicated example using the flexibility of HDF5 to load and process only part of a data set. This
can be useful when the data set is too large to fit into memory. Care is taken not to attempt to read beyond
the end of the file.

filename = 'example.h5';
try

vers = hdfSread(filename, '/FileFormatVersion');
catch

try

vers = hdf5read(filename, '/File_Format_Version');
catch
error('Couldn''t determine file format');
end
end
if vers < 2
error('This example only works with version 2 or later of the data file')
end
idList = hdf5read(filename, '/CaseIdList');
groupName = idList(l).data;
accPath = [groupName '/Calibrated/Accelerometers'];
fs hdf5read(filename, [groupName '/SampleRate']);
fs = double(fs);
fhandle = HS5F.open(filename, 'H5F_ACC_RDONLY', 'H5P_DEFAULT');
dset = H5D.open(fhandle, [groupName '/Calibrated/Accelerometers'], 'H5P_DEFAULT');
dspace = H5D.get_space(dset);

[ndims, dims] = H5S.get_simple_extent_dims(dspace);

nSamples = dims(1);

nSamplesRead = min(nSamples, 60%fs); %read at most one minute of data
accSegment = hdf5readslab(filename, accPath, [0,0], [nSamplesRead, 3])';
t = (1:nSamplesRead)/fs;

figure;

plot(t,accSegment);

44

7 Working with HDF5 Files

7.6 Notes

e Arrays in MATLAB use the FORTRAN convention of storing them in memory by column then row,
instead of the C convention (used by HDF 5) of row then column. This has the effect of making the
returned arrays transposed from how this document (and many other interfaces to HDF5) claim they
are laid out.

e Older versions of MATLAB (before 2009a) did not support the compression used in TK Motion Man-
ager’'s HDF 5 files. If you are using one of these older versions, the free hSrepack utility available from
the HDF Group can remove the compression. This utility is available at:

http://www.hdfgroup.org/HDF5/release/obtain5.html
The command to repack the file is:
h5repack -f NONE example.h5 example_no_compression.h5

45

http://www.hdfgroup.org/HDF5/release/obtain5.html

8 Calibration

8 Calibration

There are two 2KB blocks of calibration data stored on each monitor’s internal flash memory. The first of
these contains factory calibration and should not be modified. The second one contains user calibration.
If the user calibration block is valid, it will be used for calibrating raw data instead of the factory calibration.
There are two ways to modify the user calibration: using the recalibration functionality in TK Motion Manager,
or by loading a custom calibration .hex file in TK Motion Manager. This section details the .hex file format
and contents.

8.1 File Format

The .hex file is a plain text (ASCII) file format based on the Tektronix extended HEX file format, with small
modifications. The file format has two types of records:

e Data records: contains the header field, the load address, and the object code.
e Termination records: signifies the end of a module.

The header field in the data record contains the following information.

ltem Number of ASCII Characters | Description
% 1 Data type is Tektronix format
Block Length | 2 Number of characters in the record, minus the %

6 = data record
Block Type 1 o
8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the record
except the % and the checksum itself

The load address in the data record specifies where the object code will be located. The first digit specifies
the address length; this is always 8. The remaining characters of the data record contain the object code,
two characters per byte.

The termination record is not used in this context. It is also assumed that lines starting with '# are comments

and should be ignored by the parser. Metadata lines are designated with a leading '’ character. The
comments and meta data extensions are not part of the original format.

46

8 Calibration

Hex Format

1+10+6+8+1+0+0+0+0+0+0+0+

Checksum: 26N = 5 L 0+2+0+2+0+2+0+2+0+2+0

Block length:

lah=26 Object code: 6 bytes
= = .

Header %$1a626810000000202020202020

character L1 | |

Block type: 6 Length of L Load address: 10000000h
(data) load address: 8

8.2 Data Format

8.2.1 Calibration version 5

The tables below show the organization of the calibration data in the hex file. The first 64 bits are a version
number, and must be equal to the specified value. Wherever a zero is present in the tables, it should be
interpreted as a literal zero to be stored in that memory location. All of the calibration data is represented in
one of two data types. The first is a fixed point 64-bit integer with 50 fractional bits in 2's compliment format
(Q13.50). The second is an unsigned 16-bit integer.

16-bit integers are used for representing temperature dependent bias for each sensor. The subscript on the
values in the table below denotes the temperature in degrees Celsius. There are two temperature sensors
on the monitor (one on the gyro, and one on the microcontroller), and each has a different set of scale and
offset values. Of the two, the gyro temperature sensor is more accurate, so it is used by default. If the gyro
is configured to be turned off, the MSP temperature sensor is used instead.

Near the end of the memory block there are three magnetometer bias values. These are used as part of the
internal bias compensation and should not be modified.

47

8 Calibration

offset | OxO | Ox1 | Ox2 | Ox3 [0Ox4 | Ox5 | Ox6 | Ox7 | Ox8 | Ox9 | OxA | OxB | OxC | OxD | OxE | OxF
0x000 0x8000000000000005 acc_x_scale

0x010 acc_y_scale acc_z_scale

0x020 acc_x_scale_temp acc_y_scale_temp

0x030 acc_z_scale_temp acc_xy_sensitivity

0x040 acc_xz_sensitivity acc_yz_sensitivity

0x050 xacc_b_-10 | xacc_b_-09 | xacc_b_-08 | xacc_b_-07
0x060 | xacc_b_-06 | xacc_b_-05 | xacc_b_-04 | xacc_b_-03 | xacc_b_-02 | xacc_b_-01 | xacc_b_00 | xacc_b_01
0x070 | xacc b 02 | xacc b 03 | xaccb 04 | xacc b 05 | xacc b 06 | xacc b 07 | xacc b 08 | xacc_b_09
0x080 | xacc b_10 | xacc.b_11 | xacc b 12 | xacc.b_13 | xacc b_14 | xacc.b_15 | xacc.b_16 | xacc_.b_17
0x090 | xaccb_18 | xacc.b_19 | xacc.b_ 20 | xacc.b21 | xacc.b 22 | xacc_b_ 23 | xacc_b_24 | xacc_b_25
0x0a0 | xacc b 26 | xacc b 27 | xacc b 28 | xacc b 29 | xacc b 30 | xacc.b_31 | xacc b .32 | xacc_b_33
0x0b0 | xacc b_34 | xaccb 35 | xacc_b_36 | xacc b_37 | xaccb_38 | xacc_b_39 | xacc b 40 | xacc_b_41
0x0c0 | xacc b 42 | xacc b 43 | xacc b 44 | xaccb 45 | xacc b 46 | xacc b 47 | xacc b 48 | xacc b 49
0x0d0 | xacc b 50 | yacc_ b -10 | yacc b_-09 | yacc b -08 | yacc_ b -07 | yacc_b_-06 | yacc_b_-05 | yacc_b_-04
0x0e0 | yacc b_-03 | yacc b_-02 | yacc b -01 | yacc b 00 | yacc.b_ 01 | yacc.b_ 02 | yacc b 03 | yacc b 04

0x0f0 | yacc_b_05 | yacc b 06 | yacc.b 07 | yacc.b.08 | yacc.b_09 | yacc.b_10 | yacc.b_11 | yacc b_12
0x100 | yacc b_13 | yaccb_14 | yacc.b_15 | yacc b_16 | yacc.b_17 | yacc.b_18 | yacc b_19 | yacc_b_20
0x110 | yacc b 21 | yacc b 22 | yacc b 23 | yacc b 24 | yacc b 25 | yaccb 26 | yaccb 27 | yacc b 28
0x120 | yacc b 29 | yacc b 30 | yacc b 31 | yacc b 32 | yacc b 33 | yacc b 34 | yaccb 35 | yacc b 36
0x130 | yacc b 37 | yacc b 38 | yacc.b_39 | yacc b 40 | yacc.b 41 | yacc.b 42 | yacc b 43 | yacc_b_44
0x140 | yacc_.b 45 | yacc b 46 | yacc.b 47 | yaccb 48 | yacc.b_ 49 | yacc.b 50 | zacc_b_-10 | zacc_b_-09
0x150 | zacc b_-08 | zacc_b_-07 | zacc_b_-06 | zacc_b_-05 | zacc b_-04 | zacc_b_-03 | zacc_b_-02 | zacc_b_-01
0x160 | zacc b 00 | zacc.b_01 | zacc.b 02 | zacc b 03 | zacc.b_04 | zacc.b_ 05 | zacc b_06 | zacc_b_07
0x170 | zacc.b 08 | zacc b 09 | zaccb_10 | zacc.b_11 | zacc.b_12 | zacc.b_13 | zacc.b_14 | zacc b_15
0x180 | zacc b_16 | zacc.b_17 | zacc.b_18 | zacc b_19 | zacc.b 20 | zacc.b 21 | zacc b 22 | zacc_b 23
0x190 | zacc b 24 | zacc b 25 | zacc b 26 | zacc b 27 | zacc b 28 | zacc b 29 | zacc b 30 | zacc b 31
Ox1a0 | zacc b .32 | zacc b 33 | zaccb 34 | zacc b 35 | zacc b 36 | zaccb 37 | zacc b .38 | zacc b 39
0x1b0 | zacc b 40 | zacc.b 41 | zacc.b 42 | zacc b 43 | zacc.b 44 | zacc.b 45 | zacc b 46 | zacc b 47
0x1c0 | zacc b 48 | zacc b 49 | zacc b 50 0 gyro_x_scale
0x1d0 gyro_y_scale gyro_z_scale
Ox1e0 gyro_xy_sensitivity gyro_xz_sensitivity

0x1f0 gyro_yz_sensitivity gyro_accel_roll
0x200 gyro_accel_pitch gyro_accel_yaw
0x210 gyro_x_scale_temp gyro_y_scale_temp
0x220 gyro_z_scale_temp xgyr-b_-10 | xgyr_-b_-09 | xgyr_-b_-08 | xgyr_b_-07
0x230 | xgyr-b_-06 | xgyr-b_-05 | xgyr-b_-04 | xgyr-b_-03 | xgyrb_-02 | xgyr-b_-01 | xgyr-b_00 | xgyr_b_01

48

8 Calibration

offset | OxO | Ox1 | O0x2 | Ox3 | Ox4 | Ox5 |[Ox6 | Ox7 | Ox8 | 0x9 | OxA | OxB | OxC | OxD | OxE | OxF
0x240 | xgyr_b_02 xgyr_b_03 xgyr_b_04 xgyr_b_05 xgyr_b_06 xgyr_b_07 xgyr_b_08 xgyr-b_09
0x250 | xgyr_-b_10 xgyr_b_11 xgyr-b_12 xgyr_b_13 xgyr-b_14 xgyr-b_15 xgyr-b_16 xgyr-b_17
0x260 | xgyr-b_18 xgyr-b_19 xgyr_b_20 xgyr_b_21 xgyr_b_22 xgyr_b_23 xgyr_b_24 xgyr_b_25
0x270 | xgyr_-b_26 xgyr_b_27 xgyr_b_28 xgyr_b_29 xgyr_b_30 xgyr_b_31 xgyr_b_32 xgyr-b_33
0x280 | xgyr_b_34 xgyr_b_35 xgyr_b_36 xgyr_b_37 xgyr_b_38 xgyr_b_39 xgyr_b_40 xgyr_b_41
0x290 | xgyr-b_42 xgyr_b_43 xgyr_b_44 xgyr_b_45 xgyr_b_46 xgyr_b_47 xgyr_b_48 xgyr_b_49
0x2a0 | xgyr-b_.50 | ygyrb_-10 | ygyrb_-09 | ygyrb_-08 | ygyr-b_-07 | ygyrb_-06 | ygyrb_-05 | ygyrb_-04
0x2b0 | ygyr b -03 | ygyrb-02 | ygyr b -01 ygyr_b_00 ygyr_b_01 ygyr_b_02 ygyr_b_03 ygyr_b_04
0x2c0 | ygyr-b_05 ygyr_b_06 ygyr_b_07 ygyr_-b_08 ygyr_b_09 ygyr_-b_10 ygyr_-b_11 ygyr-b_12
0x2d0 | ygyrb_13 ygyr b_14 ygyr_b_15 ygyr b_16 ygyr-b_17 ygyr-b_18 ygyr-b_19 ygyr-b_20
0x2e0 | ygyr_b_21 ygyr_b_22 ygyr_b_23 ygyr_b_24 ygyr_b_25 ygyr_b_26 ygyr b 27 ygyr_b_28
0x2f0 | ygyr-b_29 ygyr_b_30 ygyr_b_31 ygyr_b_32 ygyr_b_33 ygyr_b_34 ygyr_b_35 ygyr-b_36
0x300 | ygyr b 37 ygyr_b_38 ygyr_b_39 ygyr_b_40 ygyr_b_41 ygyr_b 42 ygyr_b 43 ygyr_b_44
0x310 | ygyr b 45 ygyr_b_46 ygyr_b 47 ygyr_b_48 ygyr_b_49 ygyr b 50 | zgyrb_-10 | zgyr_b_-09
0x320 | zgyr-b_-08 | zgyrb_-07 | zgyrb_-06 | zgyrb_-05 | zgyrb_-04 | zgyrb_-03 | zgyrb_-02 | zgyrb_-01
0x330 | zgyr b 00 zgyr b 01 zgyr b 02 zgyr b 03 zgyr_b_04 zgyr_b_05 zgyr_b_06 zgyr_ b 07
0x340 | zgyrb_08 zgyr_b_09 zgyr b_10 zgyr b_11 zgyr b 12 zgyr b 13 zgyr b_14 zgyr-b_15
0x350 | zgyrb_16 zgyr b 17 zgyr b 18 zgyr b_19 zgyr_b_20 zgyr_b_21 zgyr_b 22 zgyr-b_23
0x360 | zgyr-b_24 zgyr_b_25 zgyr_b_26 zgyr b 27 zgyr_b_28 zgyr_b_29 zgyr_b_30 zgyr_b_31
0x370 | zgyrb_32 zgyr_b_33 zgyr_b_34 zgyr_b_35 zgyr_b_36 zgyr_b_37 zgyr_b_38 zgyr_b_39
0x380 | zgyr b 40 zgyr b _41 zgyr b 42 zgyr b 43 zgyr b 44 zgyr_b_45 zgyr_ b 46 zgyr b 47
0x390 | zgyr b 48 zgyr_b_49 zgyr_b_50 0 mag_x_scale

0x3a0 mag_y_scale mag_z_scale

0x3b0 mag_xy_sensitivity mag_xz_sensitivity

0x3c0 mag_yz _sensitivity mag_accel_roll

0x3d0 mag_accel_pitch mag_accel_yaw

0x3e0 mag_x_scale_temp mag_y_scale_temp

0x3f0 mag-z_scale_temp xmag-b_-10 | xmag_b_-09 | xmag_b_-08 | xmag_b_-07
0x400 | xmag_b_-06 | xmag_b_-05 | xmag b_-04 | xmag_b_-03 | xmag_b_-02 | xmag_b_-01 | xmag_b_ 00 | xmag_b_01
0x410 | xmag-b_02 | xmag_b_03 | xmag_b_04 | xmag-b_.05 | xmag_-b 06 | xmag_b_07 | xmag_b_08 | xmag_b_09
0x420 | xmag-b_10 | xmag-b_11 | xmag-b_12 | xmag_-b_13 | xmag-b_14 | xmag_b_15 | xmag-b_16 | xmag_-b_17
0x430 | xmag b 18 | xmag_.b_19 | xmag b 20 | xmag b 21 | xmag b 22 | xmag b 23 | xmag b 24 | xmag_b 25
0x440 | xmag-b_26 | xmag_b_27 | xmag-b_ 28 | xmag-b_.29 | xmag_-b_30 | xmag b_31 | xmag-b_32 | xmag_b_33
0x450 | xmag b_34 | xmag b 35 | xmag b 36 | xmag b 37 | xmag b 38 | xmag b 39 | xmag b 40 | xmag b _41
0x460 | xmag-b_42 | xmag_b_43 | xmag_b 44 | xmag_b_ 45 | xmag_-b 46 | xmag_b_47 | xmag_b_ 48 | xmag_b_49
0x470 | xmag_b 50 | ymag b -10 | ymag b -09 | ymag b -08 | ymag b -07 | ymag b -06 | ymag b -05 | ymag_b_-04

49

8 Calibration

offset | OxO | Ox1 | O0x2 | Ox3 | Ox4 | Ox5 |[Ox6 | Ox7 | Ox8 | 0x9 | OxA | OxB | OxC | OxD | OxE | OxF
0x480 | ymag b -03 | ymag b -02 | ymag b -01 | ymag b 00 | ymag b 01 | ymag b 02 | ymag b 03 | ymag b 04
0x490 | ymag b 05 | ymag b 06 | ymag b 07 | ymag b 08 | ymag b 09 | ymag b 10 | ymag b 11 | ymag b 12
Ox4a0 | ymag b 13 | ymag b 14 | ymag b 15 | ymag b 16 | ymag b 17 | ymag b 18 | ymag b 19 | ymag b 20
0x4b0 | ymag-b_21 | ymag b 22 | ymag b 23 | ymag-b 24 | ymag b 25 | ymag b 26 | ymag b 27 | ymag_b_28
0x4c0 | ymag b 29 | ymag b 30 | ymag b 31 | ymag b 32 | ymag b 33 | ymag b 34 | ymag b 35 | ymag b_36
0x4d0 | ymag-b_37 | ymag b_38 | ymag b_39 | ymag b 40 | ymag b 41 | ymag b 42 | ymag b 43 | ymag b 44
0x4e0 | ymag-b 45 | ymag b 46 | ymag b 47 | ymag b 48 | ymag b 49 | ymag b 50 | zmag-b_-10 | zmag_b_-09
0x4f0 | zmag_b_-08 | zmag b _-07 | zmag b -06 | zmag b_-05 | zmag b_-04 | zmag b_-03 | zmag_b_-02 | zmag_b_-01
0x500 | zmag-b 00 | zmag b.01 | zmag-b_02 | zmag-b_ 03 | zmag b 04 | zmag b_05 | zmag_b_06 | zmag_b_07
0x510 | zmag-b 08 | zmag b_09 | zmag b_10 | zmag_-b_11 | zmag-b_12 | zmag b_-13 | zmag-b_14 | zmag_b_15
0x520 | zmag-b_16 | zmag b_17 | zmag b_18 | zmag_-b_19 | zmag b 20 | zmag b-21 | zmag b 22 | zmag_b_23
0x530 | zmag-b-24 | zmag b-25 | zmag b 26 | zmag_-b 27 | zmag_-b 28 | zmag b.29 | zmag b_30 | zmag_b_31
0x540 | zmag b 32 | zmag b 33 | zmag b 34 | zmag b .35 | zmag b 36 | zmag b 37 | zmag b 38 | zmag b_39
0x550 | zmag b 40 | zmag_b_41 | zmag b 42 | zmag_b 43 | zmag b 44 | zmag b_45 | zmag_ b 46 | zmag_b_47
0x560 | zmag-b 48 | zmag b_49 | zmag_b_50 0 temp_bias

0x570 temp_scale temp_bias_msp

0x580 temp_scale_msp mag_x_bias

0x590 mag_y_bias mag-z_bias

0x5a0 mag-_conversion_gain 0

0x5b0 0 0

0x7f0 0 0

50

9 Firmware Updates

9 Firmware Updates

Firmware controls the various hardware components of your I12M product line (monitors, access points, and
docking stations). It is important to keep the firmware up to date to ensure that your system gets the latest
bug fixes and has access to the latest features. Firmware updates are bundled with updates to TK Motion
Manager. Firmware can be updated either automatically or manually.

9.1 Automatic Firmware Updates

Whenever you configure your system, your hardware is first checked to ensure that the latest firmware is
installed. If not, you will be prompted to automatically update your hardware to the latest versions of the
firmware bundled with your system.

9.2 Manual Firmware Updates

Firmware can be updated manually as well. This functionality can be used to either flash the default firmware
to one of the hardware components, or to flash a different version. To access the “Update Firmware” dialog,
click on “Tools— Update Firmware” in the menu bar.

Update Firmware i
(i) Update the firmware on your access points, docking stations, and monitors

Access Point Docking Station Monitor

l Flash Default Firmware] [Flash Default Firmware] [Flash Default Firmware I

’ Flash Alternate Firmware] [Flash Alternate Firmware] I Flash Alternate Firmwarel
[Force update even if versions match Exit

The manual firmware update tool

9.2.1 Flash Default Firmware

Your system comes bundled with an up to date version of the firmware. Pressing this button will re-flash this
version of the firmware onto the specified monitor.

9.2.2 Flash Alternate Firmware
For testing purposes or to address an issue in a timely fashion, it may be necessary to flash a monitor with

a version of the firmware that is different than the bundled version. You will have to specify the alternate
51

9 Firmware Updates

firmware file to use with this option.
9.2.3 Force Update

When using either of the options above, if the firmware version on the target device(s) matches the firmware
version to be flashed, the device will be skipped. If the “Force update even if versions match” checkbox is
selected, however, the firmware will be flashed even if the versions match. This may be necessary in some
cases to recover a malfunctioning device.

52

10 Monitor Reference

10 Monitor Reference

10.1 Charging

A movement monitor charges its internal battery any time it is connected to a docking station. At the optimal
charge rate the movement monitors internal battery will complete its bulk charge (80%-90%) within an hour
for a fully discharged battery. It is recommended that the movement monitor be charged for up to 3 hours to
provide a peak charge to the battery ensuring it has the longest run time and improves battery life.

Warning: Your movement monitor uses a lithium battery. This battery may only be charged over a limited
temperature range. Never attempt to dock or charge your Opal when the temperature experienced can be
outside the range of 0 to 45 degrees Celsius (32 to 113 degrees Fahrenheit). The recommended charging
and docking temperature range is between 5 to 35 degrees Celsius (40 to 95 degrees Fahrenheit).

10.2 Powering Down

If you wish to power down your monitors for storage or travel, dock or plug in the monitors you wish to
power down and select the “Tools—Halt All Monitors” option in TK Motion Manager. After this is selected, all
monitors will power down when they are undocked or unplugged.

10.3 Data Storage

The movement monitors utilize a flash card to store data while logging. This data can be downloaded by
using a docking station to dock the movement monitor. When the movement monitor is docked it finishes up
writing to the internal flash card and then releases it to the docking station. At this time the docking station
indicates to the PC that there is a new read only removable drive to be mounted. Using your file browser
you can navigate to the removable drive and copy the files off of it. The files are in a proprietary raw format
and need to be converted to either a HDF5 or CSV format that will provide data in calibrated Sl units. This
conversion happens automatically if TK Motion Manageris used to import the data. Alternately, there are
functions in the SDK to do this conversion programmatically.

10.4 Cleaning

Cleaning the movement monitors case should be done by wiping the bottom of the case where it contacts

the skin with Rubbing alcohol or other cleaning wipe. If the entire case needs to be cleaned use only an ethyl

alcohol or isopropyl alcohol based wipe. Methyl alcohol should be avoided for cleaning the top since it will

cause degradation of the plastic over time. The movement monitor should not be submerged in any liquids or
53

10 Monitor Reference

subjected to any high temperatures for cleaning. The straps on the monitor can be cleaned by wiping them
down with Rubbing alcohol. Alternatively the straps can be removed and washed separately using mild soap
and water.

10.5 Storage

Storage of the movement monitor should be in a dry static fee location. An anti-static bag or in the supplied
case is recommended. The movement monitor should also not be subjected to any large G forces to prevent
damage or changes to the calibration of the sensors in the monitor. It is recommended for the health of the
battery to to have at least a bulk charge during storage.

10.6 Drivers

Drivers are provided as part of the library distribution and TK Motion Manager. Instructions for installing
drivers are provide in the “Hardware Driver Installation” section of this document.

10.7 Firmware Updates

Updating the movement monitor firmware should be done using the TK Motion Manager software.

10.8 Technical Specifications

e The accelerometer range is +58.8 m/ s? (6 g) (optionally £19.6m/s? (2 g)).

e Accelerometers have a typical noise density of 1.3 mm/ s?/ VHz.

e The X and Y axis gyros have a range of +34.9 rad/s (2000 dps)

e The Z axis gyro has a range of +26.8 rad/s (1500 dps)

e The X and Y axis gyros have a typical noise density of 0.81 mrad/s/ VHz

e The Z axis gyro have a typical noise density of 2.2 mrad/s/ VHz

o Magnetometers have a range of +6 Gauss

e The magnetometers have a typical noise density is 160 nT/ VHz

e Positive X is pointing from the monitor toward the connector. Positive Y is pointing left of X looking
top down at the monitor. Z is pointing up out of the top of the case. Angular velocity sign is defined
according to a right hand rule. A counterclockwise rotation about the Z axis looking from the +Z direction
is positive.

54

10 Monitor Reference

10.9 LED Reference

10.9.1 Status Codes and LED Colors/Patterns

The LEDs on the access points and movement monitors provide important information about the operating
state of the hardware, including error statuses. The tables below list the LED patterns associated with these
states and can be useful in troubleshooting issues encountered with the hardware.

10.9.2 Movement Monitor LED Reference

Movement monitors contain a RGB LED capable of outputting a wide array of colors to the user to indicate
its current state. The following colors are used: white (0), red (®), yellow (), green (®), cyan (@), blue (@),
magenta (@), and led off (_). In the off state the LED will appear as a non illuminated white dot in the corner
of the monitor opposite the docking connector. All LED patterns are output on a repeating cycle which may
vary in period depending on the pattern. In all cases the last color listed will stay constant until the pattern
repeats. For example “ _ " will blink yellow twice and then stay off until the pattern repeats.

55

10 Monitor Reference

State

LED Pattern

Startup Mode (boot loader)

Startup wait (5 sec) v1.0, bootloader v1

Startup wait (5 sec) v1.1, bootloader v2 e

Failed to load firmware ()

Boot loader mode @)
Firmware Mode

Docked mode (pre-charging — very low battery) o

Docked mode (bulk charging — low battery) @o(fast)
Docked mode (trickle charging — 80-100% charge) @0(slow)
Docked mode (full charge) ®

Docked mode (battery error) (1)

Docked mode (wait) ®

Docked mode (error) 00
Reset mode O-
Transitioning into standby or powering off o

Hold mode o

Run mode (battery level 4, full) 0000
Run mode (battery level 3) 0 0. 0_
Run mode (battery level 2) (X

Run mode (battery level 1, low) o

Run mode (battery very low) 0_0_
Run mode (clock unset, battery level 4, full) 00000
Run mode (clock unset, battery level 3) 0000
Run mode (clock unset, battery level 2) 000

Run mode (clock unset, battery level 1, low) (X

Run mode (clock unset, battery very low) o _ __
Run mode (no sync-lock, battery level 4, full) 0 0.0 0.0_
Run mode (no sync-lock, battery level 3) 0 0.0 0.
Run mode (no sync-lock, battery level 2) 0 0.0_
Run mode (no sync-lock, battery level 1, low) [XU

Run mode (no sync-lock, battery very low) o _ _ _
Run mode (clock unset, no sync-lock, battery level 4, full) 000000
Run mode (clock unset, no sync-lock, battery level 3) 0 0.0 0.0_
Run mode (clock unset, no sync-lock, battery level 2) 000 0.
Run mode (clock unset, no sync-lock, battery level 1, low) 0.0 0.
Run mode (clock unset, no sync-lock, battery very low) e _ _ _

56

10 Monitor Reference

State

LED Pattern

Error Modes

Error mode: default o_

Error mode: configuration 0. 0.

Error mode: system 0. 0.0_
Error mode: data buffer 00060
Error mode: SD buffer 0.0.00.0.
Error mode: SD I/O 00000.0._
Card is full o

Wireless Streaming Debug LED Modes

Normal o

CPU limited oo_

Sync bad oe.

CPU limited, Sync bad (TN

Missed sync > 0 -

Missed sync > 0, CPU limited o

Missed sync > 0, Sync bad o

Missed sync > 0, CPU limited, Sync bad o

57

(0]
(&)
c
o
,.% ¥
o [wwseg]
S u 1z
= f
m o
[WwsZ]
= uIg40’
[Wws0z]
[wwQ L 9g] ul08’
Uzl
[Wwiog-9¢] [Wwigs's]
uiZeyL | uwpez
[Wwior gy]
uI906’ L
[Ww0g'zr]
ﬂnuu Qm;_ﬁ - uI689" |
- — a «
aWa [Ww0S'g] ?DP_MWMHB
S [Wwiorel] ulgee” :
() uigzs’ }
© [wwog' 1] &
o0 UILG0'0 A PRAIYL ¥ OXZW
m [Wwgg 0]
- NYHL UISEO D
c 1-2 :37vOS o L¥ IVINONY ‘S00°F =XXX" 'L10'F =XX" :a3HIDIdS ISIMYTFHLO SSIINN :SIONVHITOL
n 9zZIpouy Jo9|D 80000 -wnuUIwNyY M do} §gv/Dd PUD 8sug WnuIWNlY 1909 VLYW
SINTWIWOD 1" | UOISIDA ‘sUOISUSWIQ JIOHUOW WAV
o
1
o
1

58

11 Access Point Reference

11 Access Point Reference

11.1 Drivers

Drivers are provided as part of the SDK distribution and TK Motion Manager.

11.2 Firmware Updates

Updating the movement monitor firmware should be done using the TK Motion Manager software.

11.3 Mounting and Placement

The antennas of the access point are located directly behind the black plastic face of the access point. The
access point(s) should be aimed such that this face is in the approximate direction of the area where the
movement monitors will be used.

11.4 Using Multiple Access Points

Having multiple access points is useful when redundancy is needed or when recording from more than 6
SXTs. To configure multiple access points, you must have them attached to your computer via USB at the
time of configuration. Additionally, the access points must be linked via RCA cable (a standard stereo cable).
The rest of the configuration is handled automatically.

11.4.1 Redundancy

In some recording environments, it may be difficult to always maintain line of site from your streaming SXTs
to the access point. For example, you may have a bend in a hallway, or you may be operating in a large open
space where you are unlikely to receive a reflected signal if the SXT is pointed away from the access point.
In these scenarios, multiple access points can be used to provide better coverage. The streaming SXTs will
communicate with whichever access point is providing the stronger signal.

11.4.2 Streaming from more than 6 SXTs

Each access point can communicate with up to 6 SXTs simultaneously. You can therefore stream from up to
12 SXTs with 2 access points, or 24 SXTs with 4 access points.

59

11 Access Point Reference

11.5 LED Reference

Access points contain a RGB LED capable of outputting a wide array of colors to the user to indicate its
current state. The following colors are used: white (0), red (®), yellow (), green (®), cyan (®), blue (@),
magenta (@), and led off (). All LED patterns are output on a repeating cycle which may vary in period
depending on the pattern. In all cases the last color listed will stay constant until the pattern repeats. For

example “ _ _” will blink yellow twice and then stay off until the pattern repeats.
State LED Pattern
Access point is powered on and is not receiving data from any monitors)

Access point is receiving data from all monitors and there is no excessive latency for | ®_
any of the monitors

Access point is receiving data from all monitors but there is excessive latency (>3s) in | ®®
one or more monitors. The latency is, however, decreasing (improving). This usually
indicates that one or more monitors was temporarily obstructed and is now catching
up.

Access point is receiving data from all monitors but there is excessive latency (>3s) in | ®®

one or more monitors which is increasing (getting worse). This usually indicates that
one or more monitors is obstructed and is having trouble transmitting its data.

Access point is receiving data from one or more, but not all, of the movement monitors | @_

Access point is receiving data from one or more monitors that it is not expectingtore- | @or @
ceive data (e.g. there is a monitor configured on another computer system streaming
data)

Access point is in low power USB suspend mode.

Access point firmware error type 3, contact support 000

Access point firmware error type 4, contact support 000 0_

Access point firmware error type 5, contact support 0. 0000 __
Access point SDRAM Memory error, contact support 00000000 _

11.6 Mechanical and Electrical Specifications

Weight: 1.2Ibs, (550 grams)

Electrical: 290mA at 5V over USB connection

60

(0]
o
=
o
£
()
o
,~—
=
(@)
a
(%)
(7]
(V)
(&)
[$)
<<
A
A

[WwSS Ty]
uIs/9"|
[Wwg /] L [wweges] 8|OH paddo] 0z-1/1
uIgg| "y uI0S€'C [WWe0L]
ulZoy

I S
[Wwog'g/] [WwiszeT]
uiggo'e ulZLé

[Wws/ 601]
g9 L'y

[Ww96'0T]
Slleracy

[WwGs 6] [wwgseg]
uIg/s L uI90e"e (WWOg0L] (WWi0s'1 1Z]
UE Ly ul/ze's [wwgle]

v

[AR=I\/ON o L¥ AVINONY ‘S00°* =XXX"'L0"* =XX" :A314I03dS ISIMIFHLO SSIINN :STIONVIIIOL

SZIpPouy Io3s[3 ,8000°0 WNUIWNY HSINH doj sgv U PUDJS g 200 WNUILNY (909 VLYW

HUI0d$s900Y WAdY :3ywn 374

‘SINIWWOD

11.7 Technical Drawing

1

6

12 Docking Station Reference

12 Docking Station Reference

12.1 Drivers

Drivers are provided as part of the SDK distribution and TK Motion Manager.

12.2 Power

e If running a single docking station, it can be powered from:

— a USB cable plugged into a dedicated USB port on your computer
a USB cable plugged into a a powered USB hub

a USB cable plugged into a wall adapter (charging only)

the external AC adapter (charging only)

¢ If running a chain of 2 or more docking stations:

— For data transfer, both USB and external AC power are required. If a power-related error occurs,
then the docking station will blink yellow until external or power is plugged in.
— if only charging is required, the external AC power must be used

12.3 Mechanical and Electrical Specifications

Weight: 0.2 Ibs, (90 grams)

Electrical: 500mA at 5V over USB connection, or 500mA per dock when a chain is supplied by external

power.

62

12 Docking Station Reference

12.4 LED Reference

Docking stations contain a RGB LED capable of outputting a wide array of colors to the user to indicate its
current state. The following colors are used: white (0), red (®), yellow (), green (®), cyan (®), blue (@),
magenta (@), and led off (). All LED patterns are output on a repeating cycle which may vary in period
depending on the pattern. In all cases the last color listed will stay constant until the pattern repeats. For

example “ _ " will blink yellow twice and then stay off until the pattern repeats.
State LED Pattern
OK [
Powered off, USB suspended, or booloader pause [)
OK, but USB not enumerated
Power problem. Need to plug in external power or USB | = _
power.
Docking in progress o
Docked, but SD unavailable to host [)
SD Card mounting in progress [X
SD Card mounted and avaliable to host [)
SD card read-access in progress o
USB error Y
Error o_
Error: SD card mounting error e._o_
Error: in-dock USB hub problem 0 0 0.
Firmware error type 4, contact support 0000
Firmware error type 5, contact support 0. 0.0 00._
Firmware error type 6, contact support 000000
Bootloader mode [)
Updating firmware ¢)
Hardware Error - DA 000000,
Hardware Error - GA 000000
Hardware Error - PA o o o _
Hardware Error - UA 000000

63

(0]
8]
c
o
2
()
c
c
S
-~
Iy
9]
>
iS
S
]
Q
N
Al

12.5 Technical Drawing

[wwoL Tl]
uI00S” @

[ww/sy]

ﬁ uIog L’

[Wwi(G 17]
ulye9” L

[wwi9 /€]
08y |

[Wwsz 6]
uy9e”

[Wwey /] [WwSz 9T |
uIesz’ uIeeo’ L
[Wwgy /] [Wwi09 6 |
uIgsT uIgG s |
[WwW0S 79]
uI6£5°C
[Ww0SZS |
ui£90°c
M} M«Om o L+ AVINONY ‘S00°* =XXX""L0"* =XX" :d314ID3dS ISIMIFHLO SSIINN :SIONVIFIOL
SZIpPouy 13|15 80000 ”EDC_ED_,«“IW_ZE woyoq @ doj sgv pup ajoid WNUIWNY (909 VLYW
‘SINIWWOD #9200 'WAdY 3vyn 3w

64

13 Technical Support

13 Technical Support

Please contact us at:
email: techsupport@nexgenergo.com
telephone: 514-685-8593

65

	Welcome
	System Overview
	Movement Monitors
	The SXT
	The WXT
	The DWT

	Docking Station
	Access Point
	Recording Modes
	Robust Synchronized Streaming
	Rapid Synchronized Streaming
	Synchronized Logging
	Low Power Logging

	TK Motion Manager
	NexGen Software Development Kit

	Downloading the SDK
	SDK Directory Structure

	Software Tools and Libraries
	Programming Libraries
	Development Environments

	C API
	Documentation
	Using the Host Libraries
	Headers
	System Context
	Docking Station Handle
	Configuration of Movement Monitors on a Docking Station
	Access Point Handle
	Configuration of Synchronized Wireless Streaming & Logging Mode
	Variable Output Rates
	Wireless Channel Selection
	Configuration of Rapid Streaming Mode
	Rapid Streaming with Correlation
	Rapid Streaming without Correlation
	Configuration of Synchronized Logging Mode
	Configuration of Low Power Logging Mode
	External Sync

	External Synchronization and I/O
	Configuration
	Input Synchronization
	Input Triggers
	Sample Selection with External Input Trigger Events
	Annotation of Externally Triggered Recordings

	Output Synchronization
	Output Triggers

	Isolated External Interface Details
	RCA Inter-AP Sync Connector
	6 Pin Digital Input/Output Connector
	4 Pin Analog Input/Output Connector
	Schematic
	Converting .APDM files to HDF5 or CSV
	Return Codes
	Logging
	Threading

	Wireless Buffering and Data Correlation
	Max Delay / Max Latency

	Real-time Systems
	Timing and Protocol Properties
	DLL's, DYLIB's and SO's
	Java
	Other Systems

	Programming Examples
	Example Code Provided with the SDK
	Simple Configuration and Streaming Example
	High Level Psuedocode
	C Programming Example
	Java Programming Example
	Matlab Programming Example

	Working with HDF5 Files
	HDFView
	Data Organization
	File Structure
	Version 3
	Version 2
	Version 1

	Working with HDF 5 in MATLAB
	Examples
	Notes

	Calibration
	File Format
	Data Format
	Calibration version 5

	Firmware Updates
	Automatic Firmware Updates
	Manual Firmware Updates
	Flash Default Firmware
	Flash Alternate Firmware
	Force Update

	Monitor Reference
	Charging
	Powering Down
	Data Storage
	Cleaning
	Storage
	Drivers
	Firmware Updates
	Technical Specifications
	LED Reference
	Status Codes and LED Colors/Patterns
	Movement Monitor LED Reference

	Technical Drawing

	Access Point Reference
	Drivers
	Firmware Updates
	Mounting and Placement
	Using Multiple Access Points
	Redundancy
	Streaming from more than 6 SXTs

	LED Reference
	Mechanical and Electrical Specifications
	Technical Drawing

	Docking Station Reference
	Drivers
	Power
	Mechanical and Electrical Specifications
	LED Reference
	Technical Drawing

	Technical Support

